Further results on arithmetic filters for geometric predicates

نویسندگان

  • Olivier Devillers
  • Franco P. Preparata
چکیده

An e cient technique to solve precision problems consists in using exact computations. For geometric predicates, using systematically expensive exact computations can be avoided by the use of lters. The predicate is rst evaluated using rounding computations, and an error estimation gives a certi cate of the validity of the result. In this note, we studies the statistical e ciency of lters for cosphericity predicate with an assumption of regular distribution of the points. Key-words: Computational geometry, Delaunay triangulation, exact arithmetic. Adresses: O. Devillers, INRIA. F. Preparata, Center for Geometric Computing, Department of Computer Science, Brown University, 115 Waterman Street, Providence, RI 02912. This work was partially supported by ESPRIT LTR GALIA and by the U.S. Army Research O ce under grant DAAH04-96-1-0013. This work was done in part while O. Devillers was visiting Brown University. Nouveaux résultats sur les ltres arithmétiques pour les prédicats géométriques Résumé : Une manière e cace de s'a ranchir des problèmes de précision numérique consiste à utiliser le calcul exact. Dans le cas de l'évaluation de prédicat géométrique, un recours systématique à du calcul exact onéreux peut souvent être évité par l'utilisation de ltre. Le prédicat est évalué en ottant et un calcul d'erreur permet de certi er la validité du résultat. Dans ce rapport, nous nous intéresserons à l'e cacité statistique de ces ltres pour le prédicat de cosphéricité et sous l'hypothèse d'une distribution uniforme des points. Mots-clés : Géométrie algorithmique, triangulation de Delaunay, arithmétique exacte. Arithmetic Filters for Geometric Predicates 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formal Certification of Arithmetic Filters for Geometric Predicates

Floating-point arithmetic provides a fast but inexact way of computing geometric predicates. In order for these predicates to be exact, it is important to rule out all the numerical situations where floating-point computations could lead to wrong results. Taking into account all the potential problems is a tedious work to do by hand. We study in this paper a floating-point implementation of a f...

متن کامل

ar X iv : c s / 99 07 02 9 v 1 [ cs . C G ] 1 9 Ju l 1 99 9 Further Results on Arithmetic Filters for Geometric Predicates ∗

An efficient technique to solve precision problems consists in using exact computations. For geometric predicates, using systematically expensive exact computations can be avoided by the use of filters. The predicate is first evaluated using rounding computations, and an error estimation gives a certificate of the validity of the result. In this note, we studies the statistical efficiency of fi...

متن کامل

Formally certified floating-point filters for homogeneous geometric predicates

Floating-point arithmetic provides a fast but inexact way of computing geometric predicates. In order for these predicates to be exact, it is important to rule out all the numerical situations where floating-point computations could lead to wrong results. Taking into account all the potential problems is a tedious work to do by hand. We study in this paper a floating-point implementation of a f...

متن کامل

Interval Arithmetic Yields Efficient Dynamic Filters for Computational Geometry1

We discuss floating-point filters as a means of restricting the precision needed for arithmetic operations while still computing the exact result. We show that interval techniques can be used to speed up the exact evaluation of geometric predicates and describe an efficient implementation of interval arithmetic that is strongly influenced by the rounding modes of the widely used IEEE 754 standa...

متن کامل

On Second Geometric-Arithmetic Index of Graphs

The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comput. Geom.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 1999